Search results for "Signaling in cellular processes"

showing 10 items of 12 documents

Galectin-3 Impairment of MYCN-Dependent Apoptosis-Sensitive Phenotype Is Antagonized by Nutlin-3 in Neuroblastoma Cells

2012

MYCN amplification occurs in about 20-25% of human neuroblastomas and characterizes the majority of the high-risk cases, which display less than 50% prolonged survival rate despite intense multimodal treatment. Somehow paradoxically, MYCN also sensitizes neuroblastoma cells to apoptosis, understanding the molecular mechanisms of which might be relevant for the therapy of MYCN amplified neuroblastoma. We recently reported that the apoptosis-sensitive phenotype induced by MYCN is linked to stabilization of p53 and its proapoptotic kinase HIPK2. In MYCN primed neuroblastoma cells, further activation of both HIPK2 and p53 by Nutlin-3 leads to massive apoptosis in vitro and to tumor shrinkage an…

Galectin 3Cancer TreatmentGene Dosagelcsh:MedicineApoptosisProtein-Serine-Threonine KinaseBiochemistryPiperazineschemistry.chemical_compoundNeuroblastoma0302 clinical medicineMolecular Cell BiologyBasic Cancer ResearchSignaling in Cellular Processeslcsh:ScienceEnergy-Producing OrganellesApoptotic SignalingNuclear ProteinOncogene Proteins0303 health sciencesN-Myc Proto-Oncogene ProteinMultidisciplinaryCell DeathImidazolesOncogene ProteinNuclear ProteinsTransfectionNutlin3. Good healthGene Expression Regulation NeoplasticProtein TransportCell killingPhenotypeOncologyGalectin-3030220 oncology & carcinogenesisGene Knockdown TechniquesMedicineResearch ArticleSignal TransductionHumanBiologyBioenergeticsProtein Serine-Threonine KinasesN-Myc Proto-Oncogene ProteinModels Biological03 medical and health sciencesNeuroblastomaCell Line TumormedicineHumansBiologyImidazolePiperazineneoplasms030304 developmental biologylcsh:RGene AmplificationChemotherapy and Drug Treatmentmedicine.diseasechemistryCell cultureApoptosisPediatric OncologyCytoprotectionGene Knockdown TechniqueCancer researchlcsh:QTumor Suppressor Protein p53Carrier ProteinsCarrier ProteinDNA Damage
researchProduct

Identification of biological markers of liver X receptor (LXR) activation at the cell surface of human monocytes.

2012

Background Liver X receptor (LXR) α and LXR β (NR1H3 and NR1H2) are oxysterol-activated nuclear receptors involved in the control of major metabolic pathways such as cholesterol homeostasis, lipogenesis, inflammation and innate immunity. Synthetic LXR agonists are currently under development and could find applications in various fields such as cardiovascular diseases, cancer, diabetes and neurodegenerative diseases. The clinical development of LXR agonists requires the identification of biological markers for pharmacodynamic studies. In this context, monocytes represent an attractive target to monitor LXR activation. They are easily accessible cells present in peripheral blood; they expres…

Hydrocarbons FluorinatedCD226Celllcsh:MedicineBiochemistryMonocytesDrug DiscoveryMolecular Cell Biologypolycyclic compoundsSignaling in Cellular Processeslcsh:ScienceLiver X ReceptorsSulfonamidesMultidisciplinarymedicine.diagnostic_testfood and beveragesCell DifferentiationOrphan Nuclear ReceptorsFlow CytometryNuclear SignalingCholesterolmedicine.anatomical_structureGene Knockdown Techniqueslipids (amino acids peptides and proteins)Research ArticleSignal TransductionAgonistmedicine.drug_classImmune CellsImmunologyContext (language use)Biologydigestive systemFlow cytometryAntigens CDDNA-binding proteinsmedicineHumansRNA MessengerLiver X receptorBiologyCluster of differentiationMacrophagesCell Membranelcsh:RProteinsLipid MetabolismMetabolismGene Expression RegulationNuclear receptorImmunologyCancer researchlcsh:QBiomarkersCytometryFoam CellsDevelopmental BiologyPLoS ONE
researchProduct

α5β1 integrin-mediated adhesion to fibronectin is required for axis elongation and somitogenesis in mice.

2011

The arginine-glycine-aspartate (RGD) motif in fibronectin (FN) represents the major binding site for α5β1 and αvβ3 integrins. Mice lacking a functional RGD motif in FN (FN(RGE/RGE)) or α5 integrin develop identical phenotypes characterized by embryonic lethality and a severely shortened posterior trunk with kinked neural tubes. Here we show that the FN(RGE/RGE) embryos arrest both segmentation and axis elongation. The arrest is evident at about E9.0, corresponding to a stage when gastrulation ceases and the tail bud-derived presomitic mesoderm (PSM) induces α5 integrin expression and assumes axis elongation. At this stage cells of the posterior part of the PSM in wild type embryos are tight…

IntegrinsMesodermIntegrinEmbryonic Developmentlcsh:MedicineApoptosisBiochemistryMiceSomitogenesisMolecular Cell BiologyCell AdhesionParaxial mesodermmedicineAnimalsSignaling in Cellular ProcessesReceptors VitronectinCell adhesionlcsh:ScienceBiologyAxis elongationCell ProliferationRGD motifMultidisciplinarybiologyGastrulationlcsh:RGene Expression Regulation DevelopmentalCell DifferentiationMolecular DevelopmentFibronectinsExtracellular MatrixCell biologyFibronectinmedicine.anatomical_structureSomitesCytochemistrybiology.proteinlcsh:QOligopeptidesCell Movement SignalingProtein BindingResearch ArticleDevelopmental BiologySignal TransductionPLoS ONE
researchProduct

Caspase-3 contributes to ZO-1 and Cl-5 tight-junction disruption in rapid anoxic neurovascular unit damage.

2011

BACKGROUND: Tight-junction (TJ) protein degradation is a decisive step in hypoxic blood-brain barrier (BBB) breakdown in stroke. In this study we elucidated the impact of acute cerebral ischemia on TJ protein arrangement and the role of the apoptotic effector protease caspase-3 in this context. METHODOLOGY/PRINCIPAL FINDINGS: We used an in vitro model of the neurovascular unit and the guinea pig whole brain preparation to analyze with immunohistochemical methods the BBB properties and neurovascular integrity. In both methodological approaches we observed rapid TJ protein disruptions after 30 min of oxygen and glucose deprivation or middle cerebral artery occlusion, which were accompanied by…

Time FactorsAnatomy and Physiologylcsh:MedicineMiceMolecular Cell BiologyPathologySignaling in Cellular ProcessesHypoxia Brainlcsh:ScienceCells CulturedNeuropathologyApoptotic SignalingMultidisciplinaryTight junctionCaspase 3ChemistryAnimal ModelsCell biologyTransport proteinProtein Transportmedicine.anatomical_structureNeurologyBlood-Brain BarrierMedicineResearch ArticleSignal TransductionClinical Research DesignCerebrovascular DiseasesGuinea PigsIschemiaContext (language use)Caspase 3Protein degradationBlood–brain barrierNeurological SystemTight JunctionsCapillary PermeabilityModel OrganismsDiagnostic MedicinemedicineAnimalsTransient Ischemic AttacksAnimal Models of DiseaseClaudinBiologyIschemic Strokelcsh:REndothelial CellsMembrane ProteinsPhosphoproteinsmedicine.diseaseAnatomical PathologyClaudinsImmunologyZonula Occludens-1 ProteinNervous System Componentslcsh:QPLoS ONE
researchProduct

Inhibition of Xanthine Oxidase by Allopurinol Prevents Skeletal Muscle Atrophy: Role of p38 MAPKinase and E3 Ubiquitin Ligases

2012

International audience; Abstract Top Alterations in muscle play an important role in common diseases and conditions. Reactive oxygen species (ROS) are generated during hindlimb unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of this study was to determine the mechanism by which XO activation causes unloading-induced muscle atrophy in ratsand its possible prevention by allopurinol, a well-known inhibitor of this enzyme. For this purpose we studied one of the main redox sensitive signalling cascades involved in skeletal muscle atrophy i.e. p38 MAPKinaseand the expression of two well known muscle specific E3 ubiquitin ligases involved in proteolysis, …

MaleAgingAnatomy and Physiology[SDV]Life Sciences [q-bio]lcsh:MedicineMuscle ProteinsGene ExpressionHindlimbSignal transductionmedicine.disease_causep38 Mitogen-Activated Protein KinasesTripartite Motif Proteinschemistry.chemical_compound0302 clinical medicineMolecular cell biologySignaling in Cellular Processeslcsh:ScienceMusculoskeletal System0303 health sciencesMultidisciplinarySignaling cascadesMuscle BiochemistryAnimal ModelsMuscle atrophy3. Good healthMuscular Atrophymedicine.anatomical_structureBiochemistryHindlimb SuspensionMuscleMedicinemedicine.symptomCellular Typesmedicine.drugResearch Articlemedicine.medical_specialtyXanthine OxidaseMAPK signaling cascadesAllopurinolUbiquitin-Protein LigasesAllopurinolBiology03 medical and health sciencesAtrophyModel OrganismsInternal medicinemedicineAnimalsRats WistarXanthine oxidaseMuscle SkeletalBiology030304 developmental biologySoleus muscleMuscle CellsSKP Cullin F-Box Protein LigasesSuperoxide Dismutaselcsh:RSkeletal musclemedicine.diseaseRatsEnzyme ActivationOxidative StressEndocrinologychemistryRatlcsh:QPhysiological Processes030217 neurology & neurosurgeryOxidative stress
researchProduct

An anti-interleukin-2 receptor drug attenuates T- helper 1 lymphocytes-mediated inflammation in an acute model of endotoxin-induced uveitis.

2014

The aim of the present study was to evaluate the anti-inflammatory efficacy of Daclizumab, an anti-interleukin-2 receptor drug, in an experimental uveitis model upon a subcutaneous injection of lipopolysaccharide into Lewis rats, a valuable model for ocular acute inflammatory processes. The integrity of the blood-aqueous barrier was assessed 24 h after endotoxin-induced uveitis by evaluating two parameters: cell count and protein concentration in aqueous humors. The histopathology of all the ocular structures (cornea, lens, sclera, choroid, retina, uvea, and anterior and posterior chambers) was also considered. Enzyme-linked immunosorbent assays of the aqueous humor samples were performed t…

MaleChemokineAnatomy and PhysiologyDaclizumabmedicine.medical_treatmentlcsh:MedicineBiochemistryRedox SignalingOxidative DamageDaclizumabImmune PhysiologyMolecular Cell BiologyBasic Cancer ResearchSignaling in Cellular ProcessesInterferon gammalcsh:ScienceMultidisciplinarybiologyT CellsOxygen MetabolismCytokinemedicine.anatomical_structureOncologyAcute DiseaseCytokinesMedicineImmunotherapymedicine.symptomUveitismedicine.drugResearch ArticleSignal TransductionInterleukin 2Cell PhysiologyImmune CellsImmunologyInflammationAntibodies Monoclonal HumanizedSignaling PathwaysUveitisOcular SystemmedicineAnimalsBiologyInflammationbusiness.industrylcsh:RImmunityReceptors Interleukin-2UveaTh1 Cellsmedicine.diseaseeye diseasesEndotoxinsDisease Models AnimalMetabolismRats Inbred LewImmune SystemImmunoglobulin GImmunologybiology.proteinlcsh:Qsense organsMolecular NeurosciencebusinessNeurosciencePLoS ONE
researchProduct

Binding properties and stability of the Ras-association domain of Rap1-GTP interacting adapter molecule (RIAM).

2012

The Rap1-GTP interacting adapter protein (RIAM) is an important protein in Rap1-mediated integrin activation. By binding to both Rap1 GTPase and talin, RIAM recruits talin to the cell membrane, thus facilitating talin-dependent integrin activation. In this article, we studied the role of the RIAM Ras-association (RA) and pleckstrin-homology (PH) domains in the interaction with Rap1. We found that the RA domain was sufficient for GTP-dependent interaction with Rap1B, and the addition of the PH domain did not change the binding affinity. We also detected GTP-independent interaction of Rap1B with the N-terminus of RIAM. In addition, we found that the PH domain stabilized the RA domain both in …

TalinIntegrinsGTP'lcsh:MedicineGTPaseSignal transductionBiochemistryProtein structureMolecular cell biologyRIAMlcsh:Science0303 health sciencesMultidisciplinarybiologyProtein Stability030302 biochemistry & molecular biologySignal transducing adaptor proteinrap1 GTP-Binding ProteinssitoutuminenCell biologyPleckstrin homology domainRap1Research Articleendocrine systemvuorovaikutusProtein domainIntegrinSignaling in cellular processesPhosphoinositide Signal TransductionSignaling Pathways03 medical and health sciencesCell AdhesionHumansProtein InteractionsBiologyGTPase signaling030304 developmental biologyRas signalingAdaptor Proteins Signal Transducingintegriinitlcsh:RProteinsMembrane ProteinsRegulatory ProteinsProtein Structure TertiaryCytoskeletal Proteinsenzymes and coenzymes (carbohydrates)rap GTP-Binding ProteinsCell movement signalingbiology.proteinta1181lcsh:QPLoS ONE
researchProduct

Induction of RAGE Shedding by Activation of G Protein-Coupled Receptors

2011

The multiligand Receptor for Advanced Glycation End products (RAGE) is involved in various pathophysiological processes, including diabetic inflammatory conditions and Alzheimers disease. Full-length RAGE, a cell surface-located type I membrane protein, can proteolytically be converted by metalloproteinases ADAM10 and MMP9 into a soluble RAGE form. Moreover, administration of recombinant soluble RAGE suppresses activation of cell surface-located RAGE by trapping RAGE ligands. Therefore stimulation of RAGE shedding might have a therapeutic value regarding inflammatory diseases. We aimed to investigate whether RAGE shedding is inducible via ligand-induced activation of G protein-coupled recep…

MaleReceptors Vasopressinendocrine system diseasesReceptor for Advanced Glycation End Productslcsh:MedicineHydroxamic Acids570 Life sciencesRAGE (receptor)Adenylyl cyclaseADAM10 ProteinMicePhosphatidylinositol 3-Kinaseschemistry.chemical_compoundMolecular Cell BiologyNeurobiology of Disease and RegenerationSignaling in Cellular ProcessesMembrane Receptor SignalingReceptors Immunologiclcsh:ScienceReceptorLungCellular Stress ResponsesCalcium signalingMultidisciplinaryKinaseDipeptidesHormone Receptor SignalingCell biologyMatrix Metalloproteinase 9NeurologyReceptors OxytocinGene Knockdown Techniquescardiovascular systemMatrix Metalloproteinase 2Pituitary Adenylate Cyclase-Activating PolypeptideMedicineRNA InterferenceAdenylyl CyclasesResearch ArticleSignal Transduction570 Biowissenschaftenmedicine.medical_specialtyMAP Kinase Signaling SystemADAM17 ProteinBiologyAlzheimer DiseaseCa2+/calmodulin-dependent protein kinaseInternal medicinemedicineAnimalsHumansProtease InhibitorsCalcium Signalingcardiovascular diseasesBiologyG protein-coupled receptorlcsh:RHEK 293 cellsMembrane Proteinsnutritional and metabolic diseasesCyclic AMP-Dependent Protein KinasesADAM ProteinsG-Protein SignalingHEK293 CellsEndocrinologychemistryProteolysisDementialcsh:QAmyloid Precursor Protein SecretasesMolecular Neurosciencehuman activitiesReceptors Pituitary Adenylate Cyclase-Activating Polypeptide Type INeurosciencePLoS ONE
researchProduct

Oro-gustatory perception of dietary lipids and calcium signaling in taste bud cells are altered in nutritionally obesity-prone Psammomys obesus.

2013

Since the increasing prevalence of obesity is one of the major health problems of the modern era, understanding the mechanisms of oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. We have conducted the present study on Psammomys obesus, the rodent desert gerbil which is a unique polygenic natural animal model of obesity. Our results show that obese animals exhibit a strong preference for lipid solutions in a two-bottle test. Interestingly, the expression of CD36, a lipido-receptor, in taste buds cells (TBC), isolated from circumvallate papillae, was decreased at mRNA level, but remained unaltered at protein level, in obese animals. We further st…

CD36 AntigensMaleTasteAnatomy and PhysiologyCD36BiochemistryCalcium in biologyFatschemistry.chemical_compoundMolecular Cell BiologySignaling in Cellular ProcessesMembrane Receptor Signalingchemistry.chemical_classificationMultidisciplinarybiologyQRTaste PerceptionTaste BudsLipidsSensory SystemsLipid SignalingCytochemistryThapsigarginMedicinePsammomysDisease SusceptibilityIntracellularResearch ArticleSignal Transductionmedicine.medical_specialtyThapsigarginClinical Research DesignLinoleic acidScienceLinoleic AcidFood PreferencesInternal medicinemedicineAnimalsCalcium SignalingObesityAnimal Models of DiseaseBiologyNutritionCell MembraneFatty acidProteinsbiology.organism_classificationLipid MetabolismDietary FatsGustatory SystemTransmembrane ProteinsEndocrinologyMetabolismchemistryGene Expression Regulationbiology.proteinGerbillinaeMembrane CompositionNeurosciencePLoS ONE
researchProduct

Serine- and Threonine/Valine-Dependent Activation of PDK and Tor Orthologs Converge on Sch9 to Promote Aging

2014

Dietary restriction extends longevity in organisms ranging from bacteria to mice and protects primates from a variety of diseases, but the contribution of each dietary component to aging is poorly understood. Here we demonstrate that glucose and specific amino acids promote stress sensitization and aging through the differential activation of the Ras/cAMP/PKA, PKH1/2 and Tor/S6K pathways. Whereas glucose sensitized cells through a Ras-dependent mechanism, threonine and valine promoted cellular sensitization and aging primarily by activating the Tor/S6K pathway and serine promoted sensitization via PDK1 orthologs Pkh1/2. Serine, threonine and valine activated a signaling network in which Sch…

ThreonineCancer ResearchAgingSerineMice0302 clinical medicineSettore BIO/13 - Biologia ApplicataGene Expression Regulation FungalMolecular Cell BiologySerineSignaling in Cellular ProcessesThreonineGenetics (clinical)Cellular Stress Responses0303 health sciencesageing longevity Sch9 Tor Pkhs nutrients amino acidssurvival stress resistanceMechanisms of Signal TransductionValineCell biologyBiochemistryPhosphorylationSignal transductionResearch ArticleSignal TransductionSaccharomyces cerevisiae Proteinslcsh:QH426-470Adenylyl Cyclase Signaling PathwayLongevityP70-S6 Kinase 1Ras SignalingSaccharomyces cerevisiaeBiologyMicrobiologySignaling Pathways3-Phosphoinositide-Dependent Protein Kinases03 medical and health sciencesModel OrganismsStress PhysiologicalGeneticsAnimalsGene NetworksProtein kinase AMolecular BiologyTranscription factorBiologyEcology Evolution Behavior and Systematics030304 developmental biologySerine/threonine-specific protein kinase[SDV.GEN]Life Sciences [q-bio]/GeneticsCyclic AMP-Dependent Protein Kinaseslcsh:GeneticsGlucoseFoodTor SignalingProtein Kinases030217 neurology & neurosurgeryTranscription Factors
researchProduct